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The first term immediately gives 

2nKZ i 
~r xrlP°'°rG(al'rrt) (E6) a 2 

whilst the third is 

1 ~ 2nKZ i 
xo,pG(ai,rot) 

13 ~ a 2 " 

× [ ~  KZiG(ai,roi)+d ] dv (E7) 

in which the term involving d vanishes and the other 
part  gives 

2nK2Zt 
v ~ ZI xtl----~p a~j G(a~j'rtJ) (E8) 

by (B2) and (B13). 
The Fourier  correction is the t ransform of 

2nKZtxotp 
-22 G(a~,rot)[KZiG(a,rot) + d] (E9) 
at 

in which the first part  is 

2nK--aZ? T[xo,p G2(a,,ro,)] (El0)  

which is 

2nK2Z 2 
G(au,O) isp -f-2 G(V2/a,,s ) ( E l l )  a 2 a t 

by (B2), (B6), B(22) and (B23), so that  the required 
transform is 

gKZZ 2 G(a,, O) 

x ~ isp exp { - h a  2 s2/2} exp { - 2 n i r , .  s} (El2) 
whole space 

= 2nK2Z 2 G(au, O) 

x ~ sp exp {-na2s2/2} sin 2nr t . s (El3) 
I/2 s p a c e  

which enters (E5) with a sign reversal, to give (37), 
because (8) involves F(r0t), not  F(rl0 ). The second part  
of  (E9) similarly gives 

4nKdZ t ~ sp exp { -  na~ s z} sin 2nr i . s .  (El4)  
1/2 s p a c e  
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Accelerated Convergence of Crystal-Lattice Potential Sums* 

BY DONALD E. WILLIAMS 
Department of  Chemistry, University of Louisville, Louisville, Kentucky, U.S.A. 

(Received 28 September 1970) 

A method for increasing the rate of convergence of general crystal lattice sums of the type Y. q~qer~ n 
j¢k 

is described. The method is applicable for n > 3, or for n > 0 if Y qj = 0. A numerical example is given 
cell 

for the London dispersion energy (n = 6) of the benzene crystal. The calculation effort required to obtain 
the lattice sum was reduced at least tenfold. 

Introduction 

We consider here crystal lattice pairwise sums of  the 

* A preliminary account of this work was presented at the 
Eighth International Congress of Crystallography at Stony 
Brook, N.Y., August 1969. 

type 
Sn= ½ ~ q~qk"ik", 

j ~ k  

for a general composite lattice. The subscript j runs 
over one unit cell, while the subscript k runs over the 
entire lattice, excepting j = k .  The constants q~ are as- 
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sociated with atomj and r~k is an interatomic distance. 
The case n = 1 is the familiar expression for the electro- 
static energy of a crystal, where the qj are the electro- 
static charges on the atoms. 

The series for the electrostatic energy converges quite 
slowly. In fact, it does not converge at all unless the con- 
dition of overall electrical neutrality is met: ~qj=0. 

cell 
Ewald (1921) presented an alternative expression for 
the electrostatic energy which converges very rapidly; 
in this treatment a portion of the sum is evaluated in 
reciprocal space. 

Bertaut (1952) has derived very general equations for 
the electrostatic energy, similar in principle to the 
Ewald treatment, and has given a physical interpreta- 
tion to the method. The Bertaut equations are now 
widely used to obtain rapidly the electrostatic energy 
or Madelung constants of crystals. 

The method used by Bertaut to derive the rapidly 
converging expressions for S~ appeared to be specific 
for the case n = 1. We will give an alternate derivation 
of the Bertaut equations by a method which illustrates 
that the technique is not restricted to the electrostatic 
case. Further, we will show that the restriction ~qj = 0 

J 
may be removed when n > 3. In this event an additional 
constant term appears which depends on the value of 
Y~qj. 
J 

Convergence functions 

Nijboer & DeWette (1957) have shown how to improve 
the convergence rate of Sn (n > 3, qj= 1) for the special 
case where the sum is over lattice points only. The 
mathematical method was originated by Epstein (1903) 
and is also described and discussed in a review by Tosi 
(1964). We wish to generalize Nijboer & DeWette's 
result to a composite lattice in which the qj are not 
necessarily unity and for n > 0. 

The general plan is to multiply the terms of the series 
by a convergence function, cp(r), where ~0(0)= 1 and 
~0(r) decreases rapidly to zero as r increases. The Fou- 
rier transform of the remainder of the terms of the 
series is then found, and the transformed series summed 
in reciprocal space. 

Thus the sum may be written 

a n : }  ~ qjqkr~n~(rlk)+½ ~ qjqkr~n[l--~o(rlk)] • 
j # k  j # k  

To facilitate the Fourier transformation Sn may be 
written in integral notation as 

S,,=½ f [e(r)- P(r)g(r)]~o(r)r-ndr 

+½ f [e(r)- e(r)6(r)] [1 -~o(r)]r-ndr. 

Here P(r) is the Patterson function, defined by 

P(r)= V -x ~ IF(ha)l z exp (2rcih. r)= ~ qyq~(r-rjx), 
h 2 cell 

h is the reciprocal-space vector, with the subscript 2 
indicating the reciprocal-lattice points, 6(r) is the Dirac 
delta function, and ~(r) is the Kronecker delta function. 
The structure factor, F(h), is given by F(h)= 
Y. qj exp ( - 2 ~ i h .  rj), where the rj are the atomic CO- 
cell 

ordinates expressed as fractions of the unit-cell edges, 
and V is the volume of the unit cell. As indicated by the 
sum of delta functions, the Patterson function is non- 
zero only at the interatomic vector points rjk. 

The second integral in the equation for Sn may be 
evaluated through use of Parseval's integral theorem 
for real functions: 

I f(r)g(r)dr = l FT3[f(r)]FT3[g(r)]dh, 

where FT3[f(r)] = If(r) exp (2zcih. r)dr is the three- 

dimensional Fourier transform off(r). Making use of 
the fact that the three-dimensional Fourier transform 
of the Patterson function is the amplitude of the structure 
factor squared divided by the unit-cell volume, and 
using Parseval's theorem, the second integral may be 
written 

12 = ~V I [F(h)I2FT a [_l-q~(r)_rn______j] dh 

-½ i P(r)6(r) [ 1----r2(r) ] dr .  

While the choice of the convergence function, ~0(r), is 
not uniquely determined, additional restrictions on it 
may be inferred from the above integrals. Each inte- 
gral must be defined at the origin; that is, both of the 
following limits must exist: 

li__,om [ 1-1 -Tn(r) ] l im ° {FT3 [ 1 - : ( r )  ] } .  

Nijboer & DeWette suggest as a choice for the con- 
vergence function 

7 F(n/2, KZrcr 2) 1 tn/2_le_tdt , 
~0(r)= F(n/2) - F(n/2) K2~: 

where F(m) and F(m,x) are the gamma function and 
the incomplete gamma function, respectively. They 
show that the three-dimensional Fourier transform of 
[1-~o(r)]lr r~ is 

=7~n_3/2hn_3F(n 3 7~h2 ) /  (2 )  
- - 2 +  2 '  K z F . 

Inserting the limiting values of [1 -9(r)]/r n and P(r), 
we have 

l ( ~ 3 I2=½r:-3/zv-l[F(n/2)]-i IF(h)lZhn-3F - --ff + -~, 

~h~ [r ]-1 [2Kn~":2 ] 
K2) dh-½ (2 )  P(O) ~ - -  . 
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The limit as h ~ 0 of the integrand is evaluated as 

'F(O)12:g3/2-n/2Kn-3 [n 2-~3] , ( n > 3 ) .  

Making use of the fact that the structure factor, 
F(h), is nonzero only at the reciprocal-lattice points, 
ha, the final result may be written again in the form of 
a sum: 

1 [ ]~kq iqkr~nF(2 ,a2)  + V-llzn-312 s . -  2r(n/2) 
× ~ lF(ha)lZh]-'F ( n 3  ) ha:o -- ~ + ~ ' b2 + V-17znl2Kn-3 

where a2= rcKEr~k and bZ= rch~K:. The sum converges 
for n > 3; note that n is not necessarily an integer. If 

q: = 0, then the formula for S,, converges for all n > 0. 
cell 

For the electrostatic case, n = 1 and Y qj = 0, we have 
cell 1[ 

$ I -  2F(½) ~" qJqkralF(½'a2) 

+ v-,~z-1/2 ~ iF(ha)12h~2F(1,b2)_2=,/2K ~, q2]. 
ha  ¢ 0 c el I 

Since 

F(½)=zl/2,F(1,b2)=exp(-b2), and F(½,a z) 

? = 7t 1/2 exp ( -  t2)dt = r:/2ERFC(a), 
a 

$1 = ½,:k ~' qJqkr~lERFC(a)+ 52~/ha.~ 

X IF(ha)12hz2exp(-b2)- K ~ q2 . 
cell 

The last equation is identical to that given by Bertaut 
(1952). 

The generalization of the Bertaut equation to the 
range 0 < n < 3 was not immediately obvious. The rea- 
son for this is that his derivation makes use of a theo- 
rem which is uniquely true only for n = 1. This theorem 
states that the energy of interaction of a point charge is 
identical to that of a corresponding spherically smeared 
charge distribution. As we have shown, this type of 
equation also holds for n > 3 even if Y.q: # 0, in which 

cell 

case a term appears which depends on the value of :~qj. 
cell 

Application to the London dispersion energy 

The leading term in an approximate expression for the 
London dispersion energy (Hirschfelder, Curtiss & 
Bird, 1954) between non-bonded atoms is proportional 
to the inverse sixth power of the interatomic distance, 
ri~: 

3 Ijl e ~J% ,,~ qjqk 
Ejk -- 2 (Ij+Ik) r~k -- r~k 

where I is the ionization energy and ~ is the polariza- 
bility. The geometric mean combining law holds fairly 
well here for the coefficients qj since the range of varia- 
tion of the polarizabilities is larger than that of the 
ionization energies. If we further assume that the inter- 
actions are pairwise additive, the London dispersion 
energy of a crystal is identical to the negative of $6, 
with appropriately chosen values of q:. Values of q: 
may be theoretically estimated or they may be derived 
from known crystal structures (Williams, 1966). 

In terms of the complement of the error function, 
ERFC(x), which was defined above, $6 may be written: 

$6 = ½ ~ qjqk r]k6( l -{- a2 + ½ O4) exp ( -- a z) 
j~k 

[ n912~ [nl/2E 1 1 
+ \3--if-/ ~'[F(ha)12h] t RFC(b)+ (2~a b ) 

ha = 0  

Often one is interested only in the energy of inter- 
action between groups of atoms (e.g. between mol- 
ecules). In this case the intramolecular contribution to 
the sum can easily be evaluated term by term and sub- 
tracted from the total. Also, although the formula as 
written calls for summing./" over one complete unit cell, 
it is easy to reduce the formula to sum only over one 
molecule, if the other molecules in the unit cell are 
related by symmetry. In this case the constant involving 
~.q~ needs to be multiplied by Z, and the IFI 2 terms 
need to be divided by Z, where Z is the number of mol- 
ecules in the cell. The other two terms are unchanged, 
and the resulting energy is per molecule (or per mole) 
rather than per unit cell. 

Numerical calculations 

The crystal structure of benzene (Bacon, Curry & Wil- 
son, 1964) at - 55 ° was chosen to illustrate the conver- 
gence properties of $6. The nonbonded potential par- 
ameters (Williams, 1966) were taken as q2=535 and 
q2 = 36. $6 was evaluated for three values of K(0-2, 0.3, 
and 0.4) as -1052.61050 kcal.mole -1. The intramo- 
lecular terms were summed directly to obtain 
-1035.37533 kcal.mole -1. Thus the London energy is 
- 17.23517 _+ 0.00001 kcal.mole -1. The error limit given 
refers to the termination error of the series; no esti- 
mates of the errors in qr~ and qc were included. The 
convergence method provides an alternative to termina- 
tion error estimation by integration methods (Kihara 
& Koba, 1952). 

In the past a common choice for the summation limit 
in practice has been around 6 to 8 .&, resulting in a 
termination error of 14 to 6%. Kitaigorodskii (1968) 
found a 15 A limit was necessary to achieve 1% accu- 
racy; this limit requires evaluation of about 9x  103 
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terms for benzene. Fig. 1 illustrates the convergence 
properties of the direct space series for various values 
of K. The Figure shows a dramatic increase in the con- 

NO. OF TERMS 
I00 500  I000 2000 4000  6000  

I I I I I I 
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- 2  

LOG E 

- 3  

- 4  

- 5  

- 6  

I I I I I I 
0 2 4 6 8 10 12 

SUM LIMIT (A) 

Fig. 1. The relative error, e, which results from neglect of 
direct space terms with r greater than the sum limit. The 
benzene $6 example is shown for various values of the con- 
vergence constant, K. 
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Fig. 2. The relative error, e, which results from neglect of 
reciprocal space terms with h greater than the sum limit. 
The benzene $6 example is shown for various values of the 
convergence constant, K. 

vergence rate as K is increased. The relative errors 
shown in the figures refer to the London energy only, 
not the entire $6. 

Fig. 2 shows the convergence behavior of the recip- 
rocal space series. Although only a few terms yield 
rapid convergence, it should be remembered that each 
term requires an ancillary sum over the molecule to 
obtain the structure factor. The number of terms refers 
only to the asymmetric portion of the reciprocal lattice, 
one octant in this case. Note that the error at low h 
values is constant, since for benzene the first term of 
the series occurs at h=0.2094A -1. 

The optimum value of K will depend on the charac- 
teristics of the particular computer and program which 
are used, but a value of 0.3 may often be satisfactory. 
At a relative error level of 0-01, the convergence modi- 
fied series reduced the number of terms which needed 
to be considered from over 7000 to 150, with 10 recip- 
rocal space terms being required. Even larger savings 
are achieved at higher accuracy levels. 

If K is small it may be possible to neglect entirely the 
reciprocal space series while still retaining considerable 
convergence benefit in direct space. At a relative error 
level of 0.01, Fig. 2 shows that the reciprocal series may 
be neglected entirely if K =  0.2. The direct series needs 
to be summed only to 6 A to obtain the desired 1% 
accuracy. (500 terms.) 

This feature is of benefit in applying the convergence 
method where relatively low accuracy is required or 
where computer limitations or programming problems 
make evaluation of the structure factors difficult. Thus 
only a small modification is necessary to incorporate 
the convergence technique into exisitng direct space 
summation programs. At the 6 /~ summation limit, 
termination error is decreased from 14% to less than 
1%. 

The author thanks W. R. Busing for permission to 
use some of his numerical test results. This work was 
supported by U.S. Public Health Service Research 
Grant GM 16260. 
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